Thursday, 28 December 2017

Glidande medelvärde metod in excel


Flyttande medelvärde I det här exemplet lär du dig hur du beräknar glidande medelvärdet för en tidsserie i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Kan inte hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta genomsnitt och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv ett diagram över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna, eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer toppar och dalar släpper ut. Ju mindre intervallet desto närmare de rörliga medelvärdena är de faktiska datapunkterna. Hur man beräknar rörliga medelvärden i Excel Excel-dataanalys för dummies, 2: a utgåvan Dataanalyskommandot ger ett verktyg för att beräkna rörliga och exponentiellt jämnade medelvärden i Excel. Antag, för att illustrera det, att du har uppsamlat daglig temperaturinformation. Du vill beräkna det tre dagars glidande medlet 8212 i genomsnitt av de senaste tre dagarna 8212 som en del av några enkla väderprognoser. För att beräkna glidmedel för denna dataset, gör följande steg. För att beräkna ett glidande medelvärde klickar du först på kommandoknappen Data tab8217s dataanalys. När Excel visar dialogrutan Dataanalys väljer du objektet Flyttande medel från listan och klickar sedan på OK. Excel visar dialogrutan Rörlig medelvärde. Identifiera de data som du vill använda för att beräkna det glidande medlet. Klicka i textrutan Inmatningsområde i dialogrutan Rörlig medelvärde. Identifiera sedan ingångsintervallet, antingen genom att skriva in en arbetsbladets intervalladress eller genom att använda musen för att välja arbetsbladets intervall. Din referensreferens bör använda absoluta celladresser. En absolut celladress föregår kolumnbokstaven och radnumret med tecken, som i A1: A10. Om den första cellen i ditt inmatningsområde innehåller en textetikett för att identifiera eller beskriva dina data markerar du kryssrutan Etiketter i första raden. I Excel-textrutan berätta Excel hur många värden som ska inkluderas i den genomsnittliga beräkningen. Du kan beräkna ett glidande medelvärde med ett antal värden. Som standard använder Excel de senaste tre värdena för att beräkna det glidande genomsnittet. För att ange att ett annat antal värden ska användas för att beräkna det glidande genomsnittet, ange det värdet i textrutan Intervall. Berätta Excel där du ska placera de glidande medelvärdena. Använd textrutan Utmatningsområde för att identifiera det arbetsbladsintervall som du vill placera den rörliga genomsnittsdata för. I kalkylbladsexemplet har den glidande genomsnittsdata placerats i arbetsarkets intervall B2: B10. (Valfritt) Ange om du vill ha ett diagram. Om du vill ha ett diagram som visar den glidande genomsnittliga informationen markerar du kryssrutan Diagramutmatning. (Valfritt) Ange om du vill beräkna standard felinformation. Om du vill beräkna standardfel för data väljer du kryssrutan Standardfel. Excel placerar standardfelvärden bredvid de glidande medelvärdena. (Standardfelinformationen går in i C2: C10.) När du har slutfört ange vilken flyttbar genomsnittsinformation du vill ha beräknad och var du vill placera den, klicka på OK. Excel beräknar glidande medelinformation. Obs! Om Excel doesn8217t har tillräckligt med information för att beräkna ett glidande medelvärde för ett standardfel placerar det felmeddelandet i cellen. Du kan se flera celler som visar detta felmeddelande som ett värde. Home gtgt Inventory Accounting Ämnen Flytta genomsnittlig Inventory Method Moving Average Inventory Method Översikt Under den glidande genomsnittliga inventeringsmetoden beräknas genomsnittskostnaden för varje inventeringsobjekt i lager efter varje lager köp. Denna metod tenderar att ge lagervärderingar och kostnader för varor sålda resultat som ligger mellan dem som härrör från den första in, första ut (FIFO) - metoden och den sista in, först ut (LIFO) - metoden. Denna genomsnittliga metod anses vara ett säkert och konservativt sätt att rapportera finansiella resultat. Beräkningen är den totala kostnaden för de inköpta varorna dividerat med antalet varor i lager. Kostnaden för att sluta inventeringen och kostnaden för sålda varor ställs sedan till denna genomsnittliga kostnad. Ingen kostnadslayering behövs, vilket krävs för FIFO - och LIFO-metoderna. Eftersom den glidande genomsnittliga kostnaden ändras när det finns ett nytt köp, kan metoden endast användas med ett ständigt system för uppföljning av lager. Ett sådant system håller aktuella register över lagerbalanserna. Du kan inte använda den glidande genomsnittliga inventeringsmetoden om du bara använder ett periodiskt inventeringssystem. eftersom ett sådant system endast samlar information i slutet av varje redovisningsperiod och inte upprätthåller register på den individuella enhetens nivå. Även när värdena för inventarier erhålls med hjälp av ett datorsystem gör datorn det relativt enkelt att kontinuerligt anpassa lagervärderingar med denna metod. Omvänt kan det vara ganska svårt att använda den glidande genomsnittliga metoden när arkivposter upprätthålls manuellt, eftersom den ordinarie personalen skulle bli överväldigad av volymen av erforderliga beräkningar. Moving Average Inventory Method Exempel Exempel 1. ABC International har 1.000 gröna widgets på lager i början av april, till en kostnad per enhet på 5. Således är inledande inventeringsbalans för gröna widgets i april 5 000. ABC köper sedan 250 extra greeen widgets den 10 april till 6 vardera (totalt köp på 1 500) och ytterligare 750 gröna widgets den 20 april för 7 vardera (totalt köp på 5 250). I avsaknad av försäljning betyder det att den glidande genomsnittskostnaden per enhet i slutet av april skulle vara 5,88, vilket beräknas som en total kostnad på 11 750 (5 000 inledningsbalans 1 500 köp 5 250 inköp), dividerat med den totala on - handenhetsräkning på 2000 gröna widgets (1000 startbalans 250 enheter köpte 750 enheter köpt). Således var den glidande genomsnittliga kostnaden för de gröna widgets 5 per enhet i början av månaden och 5,88 i slutet av månaden. Vi kommer att upprepa exemplet, men innehåller nu flera försäljningar. Kom ihåg att vi omberäknar det glidande genomsnittet efter varje transaktion. Exempel 2. ABC International har 1.000 gröna widgets på lager i början av april till en kostnad per enhet på 5. Den säljer 250 av dessa enheter den 5 april och registrerar en kostnad till kostnaden för varor sålda till 1 250, vilket beräknas som 250 enheter x 5 per enhet. Det betyder att det nu finns 750 enheter kvar på lager, till en kostnad per enhet på 5 och en total kostnad på 3 750. ABC köper sedan 250 extra gröna widgets den 10 april för 6 vardera (totalt köp på 1 500). Den genomsnittliga rörliga kostnaden är nu 5,25, vilken beräknas som en total kostnad på 5 250 dividerat med de 1 000 enheter som fortfarande finns. ABC säljer sedan 200 enheter den 12 april och registrerar en kostnad till kostnaden för varor sålda på 1 050, vilket beräknas som 200 enheter x 5,25 per enhet. Det innebär att det nu finns 800 enheter kvar på lager, till en kostnad per enhet på 5,25 och en total kostnad på 4 200. Slutligen köper ABC ytterligare 750 gröna widgets den 20 april för 7 vardera (totalt köp på 5 250). Vid månadsskiftet är den genomsnittliga rörelsekostnaden per enhet 6,10, vilken beräknas som totala kostnader på 4 200 5 250 dividerat med totala kvarstående enheter på 800 750. I det andra exemplet börjar ABC International månaden med 5 000 startbalans för gröna widgets till en kostnad av 5 vardera, säljer 250 enheter till en kostnad av 5 den 5 april, reviderar enhetskostnaden till 5,25 efter ett köp den 10 april, säljer 200 enheter till en kostnad av 5,25 den 12 april och ändrar slutligen sin enhetskostnad till 6,10 efter ett köp den 20 april. Du kan se att kostnaden per enhet ändras efter ett lagerinköp men inte efter en lagerförsäljning. Lägg till en trend eller glidande medellinje till ett diagram Gäller för: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mer. Mindre Om du vill visa datatrender eller flytta medelvärden i ett diagram du skapade. du kan lägga till en trendlinje. Du kan också förlänga en trendlinje bortom din faktiska data för att kunna förutse framtida värden. Till exempel prognostiserar följande linjära trendlinje två kvartaler framåt och visar tydligt en uppåtgående trend som ser lovande ut för framtida försäljning. Du kan lägga till en trendlinje till ett 2-D-diagram som inte är staplat, inklusive område, streck, kolumn, rad, lager, scatter och bubbla. Du kan inte lägga till en trendlinje till en staplad, 3-D, radar, paj, yta eller donut diagram. Lägg till en trendlinje På diagrammet klickar du på den dataserie som du vill lägga till en trendlinje eller glidande medelvärde. Trendlinjen börjar på den första datapunkten i den dataserie du väljer. Markera rutan Trendline. För att välja en annan typ av trendlinje, klicka på pilen bredvid Trendline. och klicka sedan Exponential. Linjär prognos. eller två period flyttande medelvärde. För ytterligare trendlinjer, klicka på Fler alternativ. Om du väljer Fler alternativ. klicka på det alternativ du vill ha i rutan Format Trendline under Trendline Options. Om du väljer Polynomial. ange högsta effekten för den oberoende variabeln i rutan Order. Om du väljer Flytta medelvärde. Ange antalet perioder som ska användas för att beräkna det glidande genomsnittet i rutan Period. Tips: En trendlinje är mest exakt när dess R-kvadrerade värde (ett tal från 0 till 1 som visar hur nära de uppskattade värdena för trendlinjen motsvarar din faktiska data) ligger vid eller nära 1. När du lägger till en trendlinje för dina data , Excel beräknar automatiskt sitt R-kvadrerade värde. Du kan visa detta värde på diagrammet genom att markera rutan Visa R-kvadrering i kartrutan (Format Trendline-rutan, Trendline Options). Du kan lära dig mer om alla trendlinjealternativ i nedanstående avsnitt. Linjär trendlinje Använd denna typ av trendlinje för att skapa en bäst passande rak linje för enkla linjära dataset. Dina data är linjära om mönstret i dess datapunkter ser ut som en linje. En linjär trendlinje visar vanligtvis att något ökar eller minskar med jämna mellanrum. En linjär trendlinje använder denna ekvation för att beräkna de minsta kvadraterna som passar för en linje: där m är lutningen och b är avlyssningen. Följande linjära trendlinje visar att försäljningen av kylskåp konsekvent har ökat under en 8-årig period. Observera att R-kvadrerat värde (ett tal från 0 till 1 som visar hur nära de uppskattade värdena för trendlinjen motsvarar din faktiska data) är 0.9792, vilket är en bra passning på linjen till data. Visar en bäst passande kurvlinje, denna trendlinje är användbar när förändringshastigheten i data ökar eller minskar snabbt och sedan nivåer ut. En logaritmisk trendlinje kan använda negativa och positiva värden. En logaritmisk trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: där c och b är konstanter och ln är den naturliga logaritmen funktionen. Följande logaritmiska trendlinje visar förutspådd befolkningstillväxt för djur i en fastareal, där befolkningen nivån ut som ett utrymme för djuren minskade. Observera att R-kvadrerade värdet är 0.933, vilket är en relativt bra passning av linjen till data. Denna trendlinje är användbar när dina data fluktuerar. Till exempel när du analyserar vinster och förluster över en stor dataset. Ordningen av polynomet kan bestämmas av antalet fluktuationer i data eller hur många böjningar (berg och dalar) visas i kurvan. Typiskt har en order 2 polynomisk trendlinje endast en kulle eller dal, en order 3 har en eller två kullar eller dalar och en order 4 har upp till tre kullar eller dalar. En polynom eller kurvlinjig trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: var b och är konstanter. Följande Order 2 polynomial trendlinje (en kulle) visar förhållandet mellan körhastighet och bränsleförbrukning. Observera att R-kvadrerat värde är 0.979, vilket är nära 1 så linjerna passar bra för data. Visar en kurvlinje, denna trendlinje är användbar för dataset som jämför mätningar som ökar med en viss takt. Till exempel accelerationen av en tävlingsbil med 1 sekunders intervall. Du kan inte skapa en strömtriktlinje om dina data innehåller noll - eller negativa värden. En kraft trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: där c och b är konstanter. Obs! Det här alternativet är inte tillgängligt när dina data innehåller negativa eller nollvärden. Följande distansmätningsdiagram visar avståndet i meter per sekund. Power trendlinjen visar tydligt den ökande accelerationen. Observera att R-kvadrerat värde är 0.986, vilket är en nästan perfekt passform av linjen till data. Visar en krökt linje, denna trendlinje är användbar när datavärdena stiger eller faller med ständigt ökande räntor. Du kan inte skapa en exponentiell trendlinje om dina data innehåller noll - eller negativa värden. En exponentiell trendlinje använder denna ekvation för att beräkna minsta kvadrater passande genom punkter: där c och b är konstanter och e är basen för den naturliga logaritmen. Följande exponentiella trendlinje visar den minskande mängden kol 14 i ett objekt som det åldras. Observera att R-kvadrerat värde är 0.990, vilket betyder att linjen passar data nästan perfekt. Flyttande genomsnittlig trendlinje Denna trendlinje utspelar fluktuationer i data för att tydligt visa ett mönster eller en trend. Ett glidande medel använder ett visst antal datapunkter (inställt av alternativet Period), genomsnitts dem och använder medelvärdet som en punkt i raden. Till exempel, om Perioden är inställd på 2, används medelvärdet av de två första datapunkterna som den första punkten i den glidande genomsnittliga trendlinjen. Medelvärdet av andra och tredje datapunkter används som andra punkt i trendlinjen etc. En rörlig genomsnittslinje använder denna ekvation: Antalet poäng i en glidande medellinje är lika med det totala antalet poäng i serien minus nummer du anger för perioden. I ett scatterdiagram baseras trendlinjen på ordningen av x-värdena i diagrammet. För ett bättre resultat, sortera x-värdena innan du lägger till ett glidande medelvärde. Följande glidande genomsnittliga trendlinje visar ett mönster i antalet bostäder som säljs under en 26-veckorsperiod.

No comments:

Post a Comment